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Spatial Modeling in Transportation: Congestion
and Mode Choice*

Simon P. Andersonfand Wesley W. Wilson*
November, 2004

Abstract

We construct an equilibrium model of sequential bottlenecks in a trans-
portation network. The model is applied to transport mode usage in the
context of river (barge) traffic. The main alternative is rail, and barge
must be supplemented by trucking (which also enters as a stand-alone
option). We allow for congestion on the waterway, as well as congestion
avoidance by trucking past congested areas (such as locks). Finally, we
endogenize the price of river transport and show when a unique equilib-
rium exists. The equilibrium specifies the mode choice, congestion times,
and barge rates for the system.

KEYWORDS: Spatial equilibrium, congestion, transportation networks,
mode choice, equilibrium mode price, sequential bottlenecks.

1 Introduction

Many transportation networks entail a sequence of bottlenecks. This is true for
waterways where the locks are frequently a source of congestion. It is also true
for highways where certain interchanges (and toll collection areas) are prone
to block up, and for city streets that tend to congest at certain intersections.
In this paper, we construct an equilibrium model of sequential bottlenecks in a
transportation network. We build up the model from a simple starting point and
extend it to analyze first one and then several bottlenecks. We also allow for the
possibility of bottleneck avoidance (or "bypass"), meaning that a commuter or
shipper may choose to join the transport facility "downstream" of a congestion
bottleneck.

The analysis is phrased in the context of river transportation, and the paper
develops an equilibrium model of the demand for river transportation, but it
may be applied to other markets too. The micro-economic foundations for the

*We should like to thank the Navigation Economic Technologics (NETS) program for
support.

TDepartment of Economics, University of Virginia.

tDepartment of Economics, University of Oregon, and Institute for Water Resources.



model are rooted in a spatial representation of the production of output that is
to be shipped. Output may be shipped by several alternative modes, and the
equilibrium specifies what is shipped and how. Thus, the demand for shipping
is seen as the aggregation of individual producers’ choices of shipping modes.
That is, instead of assuming a demand for river services, we explicitly derive
this from the underlving demand for shipping that generates it. In doing so, we
allow for shippers to choose the preferred mode of transport, taking into account
the congestion costs. We allow for the choice of transport mode to also include
the routing choice of whether to by-pass a lock or locks. If there is a bottleneck
point near where a shipper would otherwise begin barge shipping, the shipper
may instead choose to truck past the bottleneck point and begin using the river
below the bottleneck. In our model, it is also possible for the shipper to bypass
several locks.

The framework allows for an explicit model of a transportation network.
We introduce various geographic features, such as locks along the waterway,
and we also allow for the congestion costs that locks may cause. This allows
us to introduce an equilibrium that accounts for feedback effects in the full
equilibrium system. In particular, the flow demand of traffic down-river along
with the lock capacity jointly determine the lock cost which in turn determines
the demand for traffic. Traffic demand though depends on the costs through
ALL locks. Thus, the benefits of an improvement must take into account the
induced changes at all of the others. This is indeed one of the benefits of an
explicit spatial model of traffic.

We further deal with equilibrium pricing of the barges used to haul freight.
This determination of an endogenous equilibrium price is done within the full
spatial equilibrium structure with endogenous congestion levels. There are. of
course, many aspects missing from this model, and these form important areas
of further inquiry. Some of these are described more in the concluding section.
In particular, though we assume throughout that shippers care only about the
price they will pay for shipping - reliability in terms of when it arrives, or indeed
the time taken to arrive are assumed not to be important determinants of choice.
In extensions of this work, we envisage taking account explicitly of time on the
river and the variance of the trip length. For the moment though, these features
are not explicitly included. We note that such extensions are unlikely to change
the overall structure of the model. First, we may include a separate time cost
to barge travel within the existing structure: this is readily done given that
the model already uses time spent on trips as part of the construction of the
demand for barge time. Secondly, a reliability factor may be added both to the
fixed costs of the affected modes, and/or to their marginal costs. While these
are shorthand expedients to describing more complex economic phenomena, the
treatment just outlined may be seen as a first step to including these additional
factors.

The following sections develop the model from a simple and sparse descrip-
tion up to a more complex equilibrium model. The first sketch lays out the basic
spatial framework (that can be compared to other models in which the demand
is exogenously specified) and then adds various important considerations ger-



marie to the situation. We first allow for fixed costs (with respect to distance) in
transportation, then we allow for lock costs and address the possibility of lock
by-pass. Next, congestion is introduced, as an endogenous feature that depends
on the amount of traffic coming downstream. We show that there is a unique
equilibrium to the level of congestion at each lock and the catchment area of
the river shippers. We then endogenize the price of barge services (barge rate)
by showing that there is a unique price that clears the market. This means that
the equilibrium model can be fully solved from the primitives. In the conclusion
we describe some further possible extensions.

2 Base Model

We begin with a very simple model that forms a basic template from which
the assumptions are dropped in the ensuing subsections. Shippers are located
across a region. They ship to a single terminal market which is located at the
mouth of a river. Shippers may choose to ship to the river in trucks. Shipments
then proceed down the river, traversing a set of locks en route. Shippers may
instead choose to use an alternative mode (rail).!

There is a river that runs from North to South, with length [. Space is
two dimensional, and y € [0,1] represents the latitude (vertical, or N-S coor-
dinate) of a map reference point, and z is its longitude (horizontal, or E-W
coordinate), taking the river as longitude zero. The terminal market point is
the river source, with coordinates (0,0).2 Transport follows the "Manhattan
metric,” meaning that distances are traversed horizontally and vertically only.?
The basic geography is given in Figure 1.

INSERT FIGURE 1

Trucks carry output to the river, and trucking costs ¢ per unit distance per
unit shipped.! As will be clear from what follows, trucks are only used in the

I'We use truck-barge versus rail as the two options of the shipper for simplicity of presen-
tation. The model can readily be adapted to allow for rail-to-river traflic, and more complex
patterns of shipping that reflect the transportation network more finelv. The first extension
below does capture the idea of using one shipping method (trucking) to bypass bottlenccks
on another (locks).

2We lot the terminal market be at the river month for expediency. We assume here too that
there is a single terminal market. The analysis can be readily extended to multiple terminal
markets once the principles from the single market case are determined.

3This is also known as the "block" metric reflecting the idea of ¢ity blocks. The "crow-flies"
or Euclidean metric is more cnmbersome to work with analytically, and does not appear to
give different insights. Arguably the block metric applies better to river, rail, and road since
traffic needs to follow specific routes in transportation networks.

1'We thus assume constant returns to volume and to distance in transportation. Ewpirically,
shipping costs are often felt to be concave in distance. This finding. though, likely represents
the possibility of substituting from high marginal cost options (with low fixed cost) to lower
marginal cost options when the distance shipped is greater. That is, any particular option
is perhaps satisfactorily represented as entailing a fixed cost for loading/unloading. and then
a constant unit cost per mile. Trucks likely have the lowest fixed costs. and so are cheapest
over short hauls. For longer hauls, barge traffic (if feasible) may be more economical. with its



horizontal dimension (this is modified later below). River traffic carries output
down the river, along which shipping passes at cost b per unit (b is for barge)
shipped per unit distance, in the vertical dimension. There is an alternative
transport technology. rail, which can carry output. Rail transport is assumed
to carry output at rate r per unit distance per unit output: recall that it must
first be shipped from North to South, and then from East to West. Assume that
t > r > b so trucking costs per mile are higher than rail costs, which are in turn
higher than barge costs. For now, we treat these costs per mile as constants.
This is a simple way to get a "funnel" relation to describe the catchment area
for river transport.” Since shipping by barge means a combination of the lowest
cost mode with the highest one (the truck needed to bring the output to the
river), the assumption that ¢t > r > b implies that river transport is preferred
for locations close by the river banks, and rail transport is preferred otherwise.
It will also be seen below that river transportation will tend to be preferred
further upstream (for any given distance from the river) because then the low
per-mile cost advantage of barge traffic will more easily defray trucking costs.
Then road-river transport will be used from coordinate (y,z) as long as

rz+ry > te + by. (1)
or .
T
>q = :
y2gla)=— (2)

where the numerator and denominator of the fraction term are both positive.®
Note that 7 (0) = 0, so that the river catchment area forms a triangle, symmetric
about the river, with a point (vertex) at the destination © The catchment area
broadens up towards the source of the river." The idea here is that the advantage

higher fixed cost offset by lower marginal cost. Taking the lower envelope of the costs across
alternatives yields a concave overall cost as a function of distance. For the present, we ignore
the presence of fixed costs in the different transport modes. Bowever. they are treated in the
first extension sub-section below.
5With the alternative assumption of a crow-flies distance for the rail net, the cost of bringing
output to the destination is
r (yz + 12)1/‘2 )

SThese transport rates will differ across different items shipped. and so the margins will
be different for different commodities. Shippers may also place different weights on other
features of shipping modes, such as time, reliability, ete. Systematic differences may be
readily introduced into an extended model, and idiosyncratic choice effects can be effectively
modeled with a discrete choice approach.

TBelow we introduce fixed costs in transport, and these imply that all shippers close enough
to the terminal market use trucks. However, it may also be that having the commodity already
loaded onto barges is useful for further trans-shipment! That is, it may also be important to
consider what happens beyond the terminal point.

¥As in Figure 2 below. the source of the river is also synonymous with the end of the
territory (or the Canadian border, assuming that Canadian shippers usc routes in their own
territory). For now we have not allowed for trucks to move in the vertical dimension, but we
shall allow for that below. Then, if the river stops short of the end of the territory, the extra
simply an extra triangle atop the existing cone

catchment arca north of the river’s source is
illustrated in Figure 2. This extra triangle is ke the one at the bottom of Figure 5 around
the terminal market, except the other way up.



of river transport rises with "vertical" distance (i.e., N-S) but decreases with
"horizontal" distance. Hence the "indifferent” location, which is captured as
§(x), is a diagonal line in (y,z) space. It is illustrated in Figure 2 (in this
Figure, as with those that follow, m denotes the slope of a line.)

INSERT FIGURE 2

The rate at which the boundary line rises with distance from the river in
(2) is quite subtle. It is the ratio of the extra cost of trucks over rail to the
extra cost of rail over barge. For example, suppose that t = .0025, r = .0005,
and b = .00035 (these rates are an approximation of the costs of shipping corn,
and their genesis is detailed in the Appendix). With these numbers, the critical
ratio is ::Z = .(588?5 = % = 13.33. For each mile further from the river, the
critical latitude rises over 13 miles. This gradient steepness reflects the high
differentials of the cost truck-barge relative to rail. Put another way, one would
have to go 1300 miles upriver to find shippers choosing to truck as far as 100
miles in order to use the river. Other commodities entail different costs per mile
and so will have different catchment areas.

The relations above are the key to determining demand. Indeed, once we
know what is ¢ (z), we can then readily determine the total demand for barge
traffic by integrating up over the space within the catchment area. Below we
elaborate by introducing various other elements that influence costs and hence
the choice of shipping mode.

2.1 Fixed costs

The above analysis has assumed that transportation (conditional upon a mode)
takes place at constant cost per unit distance traveled and constant cost per
unit shipped, so that we have assumed constant returns in both volume and
distance. At the level of the truck-load, the volume assumption seems not too
egregious. However, we have disregarded fixed costs associated with making
a shipment and the relationship between rates and distance seems crucial to
observed patterns.” In practice, there are fixed cost components with respect
to distance because goods need to be loaded for shipment onto and off the
truck, railear, and barge. We now allow for these fixed costs, while retaining
the assumption that marginal shipping costs per mile are constant (at rates
t. r, and b respectively). That is, as a function of distance, each mode will
entail a fixed cost as well as a constant marginal cost per unit distance. The
existence of such fixed costs implies that the (average) cost per mile decreases
with distance shipped (just like average total costs are always decreasing in
output when fixed costs with respect to output are positive and average variable
costs are constant in Principles classes) In the context of Transportation, this
phenomenon is known as "tapering" (see Locklin, 1972). These concepts are
developed in Figures 3 and 4. Our cost functions take the form F,,, +md, where

9 - .
IWithout fixed costs. the model allows for barge and rail movements even for very short

distances.



d is distance and m = t. r, b denotes truck, rail and barge, respectively. However,
since we assume it is always necessary to use trucks to arrive at the waterway
(effectively, the number of farms or other input sources close enough to load
directly onto barges is so negligible as to be disregarded) the relevant rate for
barge transport, even right next to the riverbank, is F, + F; + bd. In Figure 3,
we map rates against distance. The cost function to the shipper is the lower
envelope of the modal cost lines. There are two cases illustrated in Figure 3. In
the upper panel, each mode is used from some distance. In the lower panel, rail
is dominated in the sense that it is not the cheapest mode from any distance.

INSERT FIGURE 3

In Figure 4, we have indicated both total costs (upper panel) and average
costs (lower panel) as functions of distance, for the case in which rail movements
are not dominated. The tapering principle (diminishing rates per unit distance)
is clearly shown in the lower panel. In both panels, given the cost-minimizing
mode choice, the actual costs are the lower envelope of those associated to the
modes.

INSERT FIGURE 4

We assume that fixed costs are lowest for trucks and highest for barges, so
F, < F, < F}, as in the Figures. Intuitively, this implies that only truck is the
least expensive option from locations close by the terminal point. This intuition
is borne out in the description that follows.

The per unit costs associated with using only trucks from location (y.z) are
then F} + tx + ty. Using only rail costs F, + 7z + ry per unit. Finally, the river
option entails a barge cost of Fy, + by plus a truck cost of F; + tz, for a total
cost of Fy + F, + tx + by. The lowest cost option is found by comparing these

magnitudes.
First, truck-only is preferred to rail for F, + to +ty < F, +rz+ry, or
y<gy= (-%—:—f;‘—) — . If it were a matter of just truck and rail, this would

generate a tent-shaped catchment area for truck around the destination point
(see Figure 5).

INSERT FIGURE 5

If the fixed cost for barge transport is relatively high, we have the case
illustrated in the Figure, with a rail segment dividing the truck-only catchment
area from the truck-and barge one. In that case, the catchment are for truck and
barge is given by comparing the corresponding costs. Indeed, truck-and-barge
is then preferred as long as Fy, + F, +tz +by < F, +rr+ry. This we can rewrite
asy > glx) = —Ap%t;—’)—z where we have defined AF = Fy + F;, — F,., which is
positive because barge shipments have higher fixed costs than rail. Indeed, %



is the latitude at which rail start to give way to truck and-barge. Note that the
critical vertical distance § () is then increasing in the horizontal distance.

On the other hand, if the barge fixed costs are quite low, then, following the
river north, there is no intervening rail usage between the truck and truck-and-
barge segments. The comparison of mode usage is quite clean because a pair-
wise comparison of truck versus barge indicates that there is a critical latitude
South of which only trucks are preferred, and North of which both barges and
trucks are emploved. Indeed, the truck-only option beats truck and barge if and
only if F, +tx + ty < F, + F; + tz + by which boils down to ty < Fy + by. The
economics of this condition are that only the vertical component matters since
trucks must necessarily be used for the horizontal one: moreover, the truck fixed
cost is already expensed for the horizontal distance. Rephrasing the condition,
truck-only is preferred to truck-barge for

_ E,

Vy<y=:—"p (3)
meaning that the barge fixed cost cannot be paid for from its per-mile cost
advantage over trucks for such locations.

Given this simple condition, the full equilibrium is now simply determined
by comparing truck-only to rail for y < g, and truck-and-barge to rail for y > y.
As above, truck-only is preferred to rail for F, + to +ty < F, +rx +ry, or
y<g= %3—'2 — 2. This means that the further North (below ¥), the smaller
the truck-only catchment area. Above gy though, the larger the catchment area
for truck-and-barge shipments. Indeed, truck-and-barge is then preferred as long
as Fy+F,+tz+by < F,+rz-+ry, which we can rewrite asy > 3 (x) = ﬂ}(_tb_—ﬂ{,
where we recall that AF = Fp + F; — F, > 0. The equilibrium catchment area
configuration is indicated in Figure 6.

INSERT FIGURE 6

In what follows, we shall treat primarily the case of relatively large barge
fixed costs, the one illustrated in Figure 5, and corresponding to Figure 4. This
does seem loosely to correspond to the case of the Mississippi river system,
where it is relativelv unusual for trucks alone to be used from the same point
that truck-and-barge are used (i.e., a location such as § does not arise). We
shall mention the other case, the one illustrated in Figure 5, in footnotes where
pertinent in what follows.

2.2 Locks

Suppose that there are n locks on the river, at locations y;, ¢ = 1.....n. In the
absence of congestion (the system is below its free-flow capacity level), passing
lock j costs C;.'"” Assume too that the first lock (at y;) is far enough upstream

T hese costs include both time costs and usage fees. The time cost is a design factor that
differs across locks. Below, when we consider congestion, we separate out the time cost from
the access fee charged to those using the lock.

-1



that barge transport is used down-river from that lock (i.e., y1 > y). Then,
road-river transport will be used from coordinate (y. ), with y € (y;.y;4+1) as
long as

J
F,,+7’.'L'+7*y>Fg+Fb+t:17+by+zci, 4)
i=1
where the last term represents the costs of traversing the j locks down to the
market terminal.
Rearranging the above equation yields

t— AF +5V_ C; R
:ﬁrﬁi“ <EZ§1 for 95 € (yjouin) (5)

9, ()

with y(z) € [max {y;.9; (z)}.y;+1] as the set of locations for which river trans-
port is preferred to rail. As above, truck-only is preferred for y < 7, where y
is given by (3), and under the assumption that y; > g, so that the first lock is
sufficiently far up-river.

Notice that the RHS of the equation (5) falls every time the y value passes
through a lock location. Visually, think of a set of stacked funnels (the funnels
may have different sizes at their bases); each time a lock location is passed, the
river gets less attractive as a transport option. As the distance North increases,
though, since the advantage of river transport rises with "vertical” distance, the
river gets more attractive again as long as no further locks are passed. Thus the
pattern is like a pile of "Z’s," as illustrated in Figure 7.

INSERT FIGURE 7

2.3 Lock by-pass (single lock by-pass)

Given that it costs a fixed (i.e., distance independent) charge to pass a lock, it is
cheaper to by-pass close-by locks with truck transport. That is, we now extend
the model just above to allow for the by-pass option, using road transportation
to get just below a lock and enter the river at that point. Note that it is always
an option for a shipper to 70t by-pass (though not by-passing is not always the
least costly option) and so the set of river-using locations identified in (5) is
contained in the new set once we allow this option. However, other locations
nearby the lock and just above it, previously precluded, will now also use the
river.

The vertical cost component of using road transport down to the nearest lock,
assuming the Manhattan metric, is ¢ (y — y;) for a location y € (y;,y;+1).!* The
net cost (net of the vertical cost of transporting the same shipment down the

' The shipment enters the river just below the lock at x;. This corresponds to a river
port terminal. We assumed above that shipments can enter at any point on the river. The
framework may be readily adapted to a finite number of entry points (river port terminals)
using similar methods.



river by barge) is (t — b) (y — y;), and so by-passing the lock is preferred as long
as this net cost is smaller than the lock-crossing cost, C; (notice that loading
fixed costs do not enter these incremental calculations). This condition can be
written as (t — b) (y —y;) < C;. Rewriting this as (y —y;) < (chbj shows that
this option is preferred for all distances above the lock below the critical value
on the RHS. This means that the pattern given above is the same as in (5)
12

for y € (y i+ (t—c_-’b-).y,“) and must be modified otherwise.!? In the interval

y € (yj.yj + (—t—(:%—)> the costs of river shipping are Fy + Fp +tx +t(y —y;) +
by, + ZJ;II C,. since the j-th lock is by-passed. Comparing to the rail shipping
cost of F, + rx + ry, river is preferred as long as

i1

tw+t(y#yj)+byj+AF+ZCi > e+ 1y,

=1
which enables us to define the critical y-value where this holds with equality as

Jj-1
(t—b)y; ~AF =) Cip -

i==1

C 1
y(:v):——(t_r)

Clearly the critical y is now decreasing with z in this region. Putting all this
together, the set of locations using the river now zigzags in and out, as illustrated
in Figure 8.

INSERT FIGURE 8

2.4 Lock by-pass (multiple lock by-pass)

It is straightforward, though somewhat cumbersome, to write down the full
problem with multiple by-pass. It may be that the cost-minimizing shipment
solution involves by-passing several locks with trucks. We next provide a suffi-
cient condition for this to be so. Indeed, suppose that a shipper at location y;41
prefers to by-pass the lock at y; in the type of simple comparison undertaken in
the previous sub-section. Suppose too that a shipper at location y € (Yj+1:Yj+2)
prefers to by-pass the lock at y;4, in the same type of simple comparison. This
implies that a shipper at location y prefers to by-pass both locks. Indeed, the
first condition is
(t=b)(yj41 —y;5) <Cj

12 For simplicity, we are assuming here that the interval over which some shippers do NOT
bypass the lock is not cmpty. The analysis is readily adapted to cover the converse case.
Notice that if the interval is not empty. then necessarily at least two locks would be by-passed
by some shippers. This tvpe of behavior does correspond, in the context of the Mississippl. to
those shippers from the northern reaches who ship down below the lTocks (around St. Louis)
before using barges. Some sufficient conditions are derived below.

9



while the second one is
(t=b)(y —yj+1) <Cjsr1-
Summing these inequalities yields
(t =) (y —y;) <C;j+Cjpu.

which is the condition for a shipper at y to prefer to truck past the next two
downstream locks rather than ship by barge from y. This type of reasoning
easily extends to multiple by-pass. However, the complete shipping pattern
may be quite complex. For example, if there is a series of locks in quite close
proximity, all shippers around these locks may by-pass them directly. However,
shippers further upstream may use barge transport rather than incurring high
trucking costs to reach the series of locks. The situation on the Mississippi
would appear to be that a substantial amount of output is only put onto barges
below the lowest lock (Lock 27), which is in St. Louis. By doing so, shippers
avoid several locks upstream.

3 Congestion

To illustrate the equilibrium construction, we first consider the case of a single
lock. We then consider multiple locks. Suppose too, for further simplicity and
to clarify the insights. that lock by-pass is not an option, so that truck transport
is constrained to be in the E-W plane. The objective here is to describe how
congestion can be treated within the current framework. Let the cost of passing
the lock be a non-decreasing function of the amount of traffic flowing through the
lock from up-river. This could be a constant up to the “free-flow capacity” of the
lock, and thenceforth an increasing function. It is easier though to first assume
that the time cost of traversing the lock is simply (linearly) proportional to the
amount of traffic it handles. This assumption aids in envisaging the equilibrium
conditions that must be satisfied.

3.1 Single lock case

The objective here is to the endogenous equilibrium value of C, the lock cost,
is determined. For a given value of C, the amount of shipping traffic through
the lock is .
p=2[ 2w iy

Y1
Here f (y) is the density of shipments emanating from each square mile of land
at distance y (assuming here that the density is independent of x and other
parameters, for now), the "2" comes from symmetry, and recall [ is the length
of the river (which coincides with the whole territory). Furthermore, Z (y) is
the inverse of 4 (x), as above, and is given as

. ‘(r—b)wa
I(y)A———(t*r) :

10



For illustration, let f(y) = 1.** The amount of output traversing the lock is
then equal to the demand from points between y, and I:

pe= [

Let the cost of traversing the lock be a constant. ¢, plus 7 times the amount
of shipping,. so the equilibrium value of the traversing cost (including congestion)
is C* = ¢g + 1D (C*)."! Thus, the equilibrium cost solves

(r—b)y? — QCy}l
"

Ct—r)=co(t—~1r)+~ [(réb) [12 —yﬂ —2C" [lAyl]]-

This reduces to )
co(t—r)+ [(r=b) [2 — 3]
(t—r+29{l =) '

Of course, shipment patterns below y; are unaffected by those upstream when
there is a single lock. The value of C* just determined is to be reinserted into the
expression for § () in order to generate the catchment area for barge shipping.

Analogous techniques apply for more complex congestion functions (and also
for more locks). First, find the amount of traffic passing through a lock as a
function of the cost of traversing it. Then find the cost as a function of the
amount of traffic. The equilibrium solution is the “fixed point™ to this process.
The first relation is a decreasing one: there is less traffic the higher the cost
of passing a lock. The second one is an increasing one: costs increase with
the amount of traffic. Therefore, there is a unique solution to the equilibrium
congestion cost level. We next show how this process works when there are
several locks.

C =

3.2 Multiple locks and congestion

The problem has an interesting structure when there are multiple locks prone to
congestion. The traffic from above the highest lock faces a congestion cost from
all the locks downstream. Traffic from between the two locks furthest upstream
faces congestion costs from just the n — 1 locks downstreamy and traffic from
just above the first lock simply faces congestion from the first lock. However,
the level of congestion at the first lock depends on the total traffic from all
points further upriver, while the level at the last lock (lock n) depends just on

13 The unit density of agricultural production is purely for reducing notational clutter. Any
constant density makes no real difference at this point: with non-constant density the formula
would need to be amended. but the crucial property (for equilibrinm existence) that demand
be continuous and decreasing in cost will be preserved.

HUnder current practices, tows do not pay direetly for lock services. Most. however, pay a
fuel tax that goes into a trust fund from which some lock expenses are paid. Not all locks are
financed through the fund, and tow vessels that do not lock through locks that receive trust
fund financing are exempted. Nonetheless, most locks are financed in part throngh the fund.
and most tow companies do pay the tax. There are currently no use (access) fees. and there
is 1o congestion pricing.
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the traffic from above it (which depends on all lock congestion costs, etc.). We
can write these equations out as follows. On the demand side,

D, = D, <Z Cl)
i=1
is the traffic from North of the nth lock, which depends (in a decreasing manner)

on the total costs from passing through all locks. Define then D, as the
demand emanating from between locks 1 — 1 and n, so

n—1
Dn = Dn—l <Z C’L) )
i=1
right down to the traffic between the first and second locks, which we write as
D, =D, (Cy).

The endogenous lock costs, Cy through C,,, are determined in an analogous
fashion by all the traffic passing through them. Hence, we write

C, = O (ng) .
(%7)

Cn—-l - Cnfl (anl +-Dn)
Cn = Cn (Dn)

Il

Cy

which are increasing functions. The solution to these equations jointly deter-
mines lock costs and demands at each level.

3.2.1 Existence of an equilibrium solution

The existence of a solution follows from Brouwer’s Fixed Point Theorem. The
theorem says that any continuous mapping from a convex and compact set
into itself has a fixed point. We assume that the ID’s and C’s are continuous
functions, that the D’s are finite even when costs are zero, and that the C’s are
finite (and so bounded above) even when the D’s are at their maximum possible
values (the values associated to zero lock costs). We now show that the set of
D’s determined by the system of equations has a fixed point. First, any set of
demands (D’s) determines a set of costs (C’s). These in turn determine a new
set of D’s, and the mapping from original D’s to new D’s is continuous by the
continuity of the D’s and the C’s. Furthermore, the D’s can never exceed the
D’s that are elicited from zero values for the D’s. Thus the equation system
has a fixed point, meaning that there is a solution for these quantities: at these
quantities demanded. the cost functions determine equilibrium costs which in
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turn generate the quantities demanded. Since the quantities are determined,
then the costs are also determined. Thus, we can be sure there exists a solution
to these equations.

3.2.2 Uniqueness of the equilibrium solution

The uniqueness argument may be expressed as follows. The proof is by contra-
diction. Suppose there existed another solution. and suppose that the associated
demand for lock n. D,,. were (weakly) lower than under the first solution. Then
the congestion cost at the furthest upstream lock, lock n with cost C,,, would
be (weakly) lower because fewer shippers pass through lock n. Thus, it must be
that congestion costs are (weakly) higher at subsequent locks (than in the first
solution) in order to render D,, lower. However, with these purported (weakly)
higher costs downstream, then D,_; must also be (weakly) lower. Consequently,
C,—; must be (weakly) higher, meaning that it must be the (weakly) higher
congestion at the locks downstream of n — 1 that are responsible for the (weak)
demand reduction. But then D,_, must be (weakly) lower, etc., until we reach
the conclusion that D, must be (weakly) lower, and so C; must be (weakly)
lower too. But this means that all congestion costs are (weakly) lower than at
the first equilibrium, and so that the demand for lock n, Dy, must be (weakly)
higher than under the first solution.

The only way these statements can be reconciled is if all quantities are exactly
the same, otherwise we arrive at a contradiction. That is, no quantity may be
strictly lower than under the first solution. Clearly, the analogous argument
applies to show that no quantity may be strictly higher than under the first
solution, and so the solution is necessarily unique.

Existence and uniqueness of equilibria are important properties. They mean
that when a solution is sought. the problem guarantees one and only one is
present.

4 Barge shipping rates

We assumed in the template model that per unit shipping costs themselves are
independent of quantities shipped. However, at least in the short-run, when
the number of barges is fixed, prices of shipping by barge reflects this capacity
constraint. The shipping price is endogenously determined, as is the catchment
area for barge shipping. The techniques for finding the equilibrium rates are
rather similar to those for dealing with congestion at locks, and are given in
detail below. There are though key economic differences between congestion
and barge rates although higher levels of both are a reaction to higher mar-
ket demand for river transport. It should be recognized that congestion at a
lock only raises costs {with no corresponding direct benefits) and so is a pure
deadweight loss, while capacity constraints in the barge industry raise shipping
prices and so accrue as rents to barge owners. The higher prices do, though,
alter the composition of barge traffic.

13



Barge prices (shipping prices) may be determined in the above conceptual
framework by looking at equilibrium in the barge market. Suppose the supply
of barges is fixed (short-run), and so we need to determine the demand.’> We
proceed as follows. In the preceding model, interpret now the transport rate b
as the time spent times the barge rate per day: solet b= b where 7 is the time
spent and b is the barge rate.!'® Similarly, decompose the lock cost into time
components and direct monetary access charges: so we may write

Cj=c;+ i)Tj. j=1...n,

where ¢; is the money charge for passing the lock, and T} is the time taken.!”
Then the equilibrium (rental) rate for barge time, b, is determined as the price
that equates demand and supply for barge services.

In particular, we now show that the equilibrium exists and is unique.'® Any
barge rate, b, determines a corresponding unique set of demands in each inter-
lock interval, and so determines aggregate demand for barge services. Consider
now the effects of decreasing b. Suppose the demand D, were to fall. Then C,

n—1
would also fall. But this would mean that the sum of costs, »_ C; would have

i=1
to be higher for D, to fall. Hence D, must fall. But this, in conjunction with
n—2
the lower D,,. implies C,,_; must fall, and so this could only happen if > C;
i=1

i=
rose. The logical chain continues until we arrive at the conclusion that all costs
must have fallen, which is inconsistent with the initial premise of a lower D,.
Thus, what must happen is that D,, must rise. A priori, C, could rise or fall:

there is more traffic through the lock but at a lower cost per unit time. However,
n—1
if ¢, rose, then > C; would have to have fallen for D,, to rise.

i=1
In summary (and briefly sketching the broader concept here), the equilibrium
to this model specifies modal choice by origin-destination-commodity, conges-
tion costs (both monetary and in time) at locks, and barge rates. The equilib-
rium may be viewed as a fixed point: at the equilibrium barge rate, shippers
choose modes taking into account the full costs (in terms of time and money
congestion), and the demand for barges equals the supply. We now argue that the

volume of shipping through every single lock must rise when the price of barge
transportation falls. We just showed that the volume of shipping through the
uppermost lock must rise. Suppose then that the volume of shipping through

15Gince the argument that follows determines that the demand for barge services is a de-
creasing function of the price per unit time of barge services, then the arguinent applies equally
well when the supply of harge services is a general non-decreasing function of the price of barge
services.

16T his assuines that there is no peak-load problem. and shipping is priced at the same level
over the whole shipping season.

17"We may interpret all times as including the trip up the river to pick up the cargo and
then the trip down. This ignores the possibility of hack-hauling different commodities.

I¥We again suppose that there is no lock by-pass. Otherwise, the demand equations no
longer depend in a simple manner on the sum of costs at all Jocks lower down the river.
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lock 71 — 1 fell. Then. since D,, necessarily rose, it must be that D, _1 fell so

much that the total fell. Then C,._; would fall too: so it would have to be
n—2
the case that 3 C; would have to have risen to explain the purported fall in

i=1
D,,—1. This then implies that D, ., must fall. Hence the total volume of ship-
ping through lock n — 2 must fall (less coming down from lock n — 2 and then

less added). But this implies a lower C,_> and so it would have to be the case
n—3
that 3 C; had risen to explain the purportedly lower D,,_». This argument

=1

proceeds to the logical conclusion that all costs must have fallen; but then it
cannot be true that the initial volume through lock n —1 (i.e., Dy + D, _,) can
have fallen. Hence that volume must have risen. This argument then applies for
all subsequent locks to show that the volume at each lock must rise. Hence total
demand for barges must necessarily rise. The aggregate demand curve slopes
down, and there can be only one intersection with the supply curve. This in
turn induces a unique allocation of demand and congestion costs.

5 Some comparative static properties

There are a number of comparative static results that are of interest. These
relate to demand drivers and to supply-side differences across the modes. Con-
gestion is influenced by each of these (any change in an exogenous variable may
have an affect on volumes in the model and, hence, congestion levels). We focus
here on vields (a demand driver), rates of rail and truck, and lock performance.

In the model, total transportation demand is given, and the model deter-
mines modal splits. Transportation demand, however, can change through in-
creased vields (and, ignored here, an increase in the region of analysis). If yields
increase, only barge rates and quantities are affected. Naturally, barge rates will
rise as will quantities from a rightward shift in demand. However, the quantities
shipped by barge will increase by a factor less than that of the total quantity
produced. That is, as vields increase, the catchment areas for barge will be no
larger than before the increase. The reason is that both rail and truck rates
are fixed. This means that relative to rail and truck, barge rates will increase
due to increased traffic on the waterway which increases congestion and, hence.
barge rates. Apart from increases in yields there are no other forms through
which the demand-side of the model can affect either rates or volumes.

The supply-side has a number of different sources of comparative statics.
Changes in either truck or rail rates can affect the catchment areas as well
as the demand for barge. For example, suppose that the marginal rail rate
rose. Ceteris paribus, this increases the catchment areas for river transport
and the demand for barge. However, the catchment areas will adjust to the
new congestion costs at the various locks, and new barge prices will result.
Suppose, for illustration, that the supply of barges is fixed. This means that
the total amount of time spent for all shipments is fixed. The adjustment in the
pattern of lock use. and the change in the equilibrium areas, is quite interesting.
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In particular, there will be a relative rise in the price of using barge time as
compared to other costs of locks.

If truck rates change the effects include a further source of ambiguity. In
particular, there is both a substitution effect from truck to truck-barge (with
the truck component of the latter being small), but there is also a substitution
from truck-barge to rail. The first effect raises demand for barge transportation,
but the latter one diminishes it

Of tantamount interest to the present study, a slow down in lock performance
can be viewed as a rise in the congestion cost function at that point. This will
affect all shipments higher upriver (that pass through the lock and are subject
to higher costs). It will also end up affecting costs at locks downstream because
of induced traffic changes due to lower congestion from reduced traffic upstream.
Finally, if a lock breaks, it must be by passed. This will lead to changes in the
whole system through equilibrium adjustment.

6 Conclusions

The model laid out in this paper provides an equilibrium model for the waterway
market. Congestion bottlenecks and barge prices are endogenous to the model.
We start with explicit micro-economic foundations for the demand for barge
transportation. The model can readily be calibrated and used to provide values
for costs and benefits accruing from changes to the fundamental parameters of
the model. This foundation also allows for various possible extensions of merit
in a more detailed picture of equilibrium modeling of river shipping. The current
model can also be used to indicate the likely effects of different scenarios. For
example, a change in vields per acre (a bumper harvest in corn, for example)
will raise demand (given existing congestion and barge costs). This will then put
pressure on both the locks through additional congestion, and on the price of
barge traffic. The model of this paper, includes through its explicit construction
such general equilibrium effects, and therefore, can address the consequences for
other river transport. congestion, etc., of such changes in the parameter values.
It can also be directly used to calibrate the costs and benefits from improvements
to the efficiency of the lock system. For example. suppose that the congestion
costs were reduced at one (or several) locks in the system. Then more traffic
would use the system, and this would cause more congestion at other locks.
However, some of this pressure would also build up as increased demand for
barge services, which would raise the equilibrium price of barges. This would
raise the rents accruing to barge owners, at least in the short term (before more
barges could get allocated to the river). Shippers would benefit from overall
lower costs in shipping. The model can provide estimates of the net benefits
of such improvements in infrastructure. The model can also be used to look at
transportation improvements in concert with other changes, such as congestion
pricing of certain locks in the system.

Several extensions are likely to be important. First both the rail rate and the
truck rate are exogenous. An important extension is to look at endogenous rail
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pricing given the oligopolistic nature of the industry. Second, there is frequently
market power at the level of the shippers. Indeed, much grain comes through
grain elevators that buy up grain form farmers and then ship it. These need
to be modeled explicitly (at least where the grain industry is an important
shipper). More attention needs to be paid to the market structure in the barge
industry and its vertical integration with shippers. The current model is also
missing back-haul traffic opportunities - the possibility of hauling a different
commodity back-upriver on an otherwise empty journey to pick up a subsequent
cargo. It is readily straightforward to extend the model to multiple destination
points, and to endogenize the price of the final output.

Other factors that are important to shippers’ choice of mode include the reli-
ability of the mode, and the time it takes to ship.!” These were mentioned briefly
in the introduction, and simple expedient methods were described for thinking
about how to address these factors within the current framework. However, a
complete treatment would require a fuller description of these issues in the heart
of the model

7 Appendix: Calculation of illustrative trans-
port rates and farm yields

It is useful to have rcasonable "ball-park" estimates of transport rates to help
guide the intuition as to the size of various effects in the model.

7.1 Transportation Rates

The Grain Transportation Report (GTR) provides several figures that can be

converted to per bushel per mile rates for alternative modes. The statistics for

9/16/2004 can be found at
http://www.ams.usda.gov/tmdtsb/grain/2004/09_16_04.pdf ).

7.1.1 Truck rate per bushel per mile: =.00278

GTR provides rates per mile (based on an 80lb gross weight) for different regions
of the country and shipment distances. We used a shipment distance of 25 miles.
The cost per mile (North Central region) for corn is: 2.68 per mile (this is a
truckload per mile: we took a truckload to be 27 tons). We then converted to a
per bushel basis (corn weighs about 56 per bushel). Total paid is 2.68*25=67.
Total bushels=27%2000/56=964. Total bushel-miles=964*25=24107. Total cost
per bushel mile=.00278.

7.1.2 Rail Rate per bushel per mile: = .0005633

GTR provides rates per bushel. We used a rate from Council Bluffs, IA, to
Baton Rouge. LA. The rate per bushel is .61. To convert to the rate per bushel

EGr example, there are several reasons why diamonds are not sent by barges!
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per mile, we used the Mapquest distance (1083 miles). The result is: 0005633
per bushel mile. Notice that the truck rate is almost 5 times higher. However,
the truck rate given is for a small shipment (27 tons) taken a short distance
(25 miles). This is big on its own account. Rail is a unit train taken a long
distance (and it should therefore be expected to be small). A commonly used
number is the rate per ton-mile. The rate per ton is 21.75. The rate per ton-
mile is 21.75/1083=.0201 or about 2 cents per ton-mile. This is in the right
neighborhood for this tvpe of movement. The conversion from rate/ton-mile is
56,/2000*rate/ton-mile.

7.1.3 Barge Rate per bushel per mile= .00035

GTR provides a rate index for the “Mid-mississippi” which covers IA. This index
is 222 which means the rate is 2.22 times the base tariff rate, which is $5.32
per ton for shipments to the New Orleans area. There are 2000/56 bushels per
ton (about 35.7 bushels per ton). This translates into 5.32*%56/2000=.33069 per
bushel. The distance traveled is about 945 miles.?’ Thus, the cost per bushel
mile is about .00035 cents per bushel mile. The corresponding rail number for
a similar movement is about .0005633 which is larger by a factor of 1.609424.2

7.2 Yields Per Square Mile

We aggregated output over space in the paper. It is useful to have reasonable
values for vields per acre. We have data on a set of elevators that ship by barge
from a data set taken from USDA sources. Corresponding vields are given per
acre in the county. The mean values indicate yields of about 138 bushels per
acre. There are 640 acres per square mile. Thus. if bushels were uniformly
distributed across acres. there would be about 88320 bushels per square mile.

7.3 Price Spreads

Another indication of transportation costs can be found from the spot prices at
various locations.

The bid prices available for corn in the GTR areas follows.

Origins:

20We used mapquest distances here. The convention is to use river miles for barge fransport,
and short-line rail distances for railroads. Of course, the shipper does not care. and our
model does not have “routes” in them. We nsed mapquest distances to have something
comparable across the modes. The distance difference can be marked though. For example,
the meandering of the Mississippi gives a river-mile distance of abont 1425 miles or so.

21Long haul truck moves may also be less expensive than is indicated above. The data
source only gives rates for distances up to 200 miles. However, at 200 miles the rate is 1.75
per mile (for 27 tons). This means that the rate for truck is about .065 per ton-mile. or about
00182 per bushel mile. Rates per unit-distance fall at a non-linear rate with distance. The
figures given here are intended to be reasonable approximations to real world data, and bear
out our assumption that rates for trucks are higher than for rail, and that rail rates are higher
than for barges. The treatment in the text allows for fixed costs to loading onto the various

modes.
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1A 2.02 per bushel
1L 2.04
NE 2.27
Terminal Markets:
New Orleans 2.57
Toledo 2.21
We can compare these spreads with the costs of shipping indicated ear-
lier in this Appendix. The New Orleans to IA spread is about .55 cents per
bushel (this is the maximum willingness to pay for transportation). Consider
a shipper located about 25 miles off the river, shipping to Davenport, IA. The
truck-barge rate is .0695 per bushel by truck, plus .3307 per bushel by barge,
for a total of .4002 per bushel The corresponding rail rate is .61. This shipper
would therefore choose truck-barge. It would make a profit of .55-.4002 per
bushel shipped. They would not ship by rail, and if truck-barge was not an
option they would not ship at all.
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Figure 1.—The Transportation Network with a Single Representative Source
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Figure 2.—Modal Catchment Areas.
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Figure 3. Fixed Costs and Shipment Costs
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Figure 4 —Per Unit Costs and Per Unit Distance Tapers (Rail Movements not Dominated)

T
$/Unit
m=t R
. [ m=r
B
v
Fb e
m=b

F,
Fi

Miles

$/Unit/Mile
Miles




Figure 5.—Fixed Costs and Modal Catchment Areas (Rail not dominated)
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Figure 6. Fixed costs and Mode Catchment Areas (Rail Dominated)
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Figure 7. Fixed Costs and Locks.
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Figure 8. Fixed Costs and Simple Lock By-Pass
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The NETS research program is developing a series of

]1 E T 5 practical tools and techniques that can be used by
l | | Corps navigation planners across the country to
develop consistent, accurate, useful and comparable

navigalion - economics - technologies information regarding the likely impact of proposed
changes to navigation infrastructure or systems.

The centerpiece of these efforts will be a suite of simulation models. This suite will include:

® A model for forecasting international and domestic traffic flows and how they may be
affected by project improvements.

® A regional traffic routing model that will identify the annual quantities of commodities
coming from various origin points and the routes used to satisfy forecasted demand at
each destination.

® A microscopic event model that will generate routes for individual shipments from
commodity origin to destination in order to evaluate non-structural and reliability
measures.
As these models and other tools are finalized they will be available on the NETS web site:
http;//www.corpsnets.us/toolbox.cfm
The NETS bookshelf contains the NETS body of knowledge in the form of final reports,
models, and policy guidance. Documents are posted as they become available and can be

accessed here:

http://www.corpsnets.us/bookshelf.cfm
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